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Abstract. This paper is concerned with inference on finite dimensional parameters in semi-
parametric moment condition models, where the moment functionals are linear with respect to
unknown nuisance functions. By exploiting this linearity, we reformulate the inference problem
via the Riesz representer, and develop a general inference procedure based on nonparametric
likelihood. For treatment effect or missing data analysis, the Riesz representer is typically
associated with the inverse propensity score even though the scope of our framework is much
wider. In particular, we propose a two-step procedure, where the first step computes the projec-
tion weights to approximate the Riesz representer, and the second step re-weights the moment
conditions so that the likelihood increment admits an asymptotically pivotal chi-square calibra-
tion. Our re-weighting method is naturally extended to inference on treatment effects and data
combination models, and other semiparametric problems. Simulation and empirical examples
illustrate usefulness of the proposed method.

1. Introduction

There is a broad and important class of semiparametric models where finite dimensional pa-
rameters of interest are defined by moment conditions involving unknown nuisance functions,
such as conditional mean functions. Examples include inference on missing at random observa-
tions, treatment effects, policy interventions, weighted average derivatives, and data combination
models. Many such semiparametric models share a common feature: the moment functions for
identifying the finite dimensional parameters are linear with respect to the unknown functions.
By using the Riesz representation theorem, this linearity allows us to reformulate the original
moment conditions as multiplicative or weighted moment conditions, where the weight function
is given by the so called Riesz representer.

In the context of treatment effect analysis, this weight function is associated with balancing
weights or the inverse propensity score. Recently, several methods that directly balance the
distributional characteristics of covariates have been proposed (Hainmueller, 2012; Zubizarreta,
2015; Graham, Pinto and Egel, 2012, 2016; Athey, Imbens and Wager, 2018; Chan, Yam and
Zhang, 2016). These methods, based on balancing weights, have been employed to obtain point
estimates for the population parameters of interest, and the above authors have reported superior
performance for the empirical balancing approach.

The purpose of this paper is to (i) develop a general framework of semiparametric inference
for linear functional models (which covers the balancing weights as a special case), and (ii)
construct a new weighting scheme that would be useful for conducting statistical inference (i.e.,
interval estimation and hypothesis testing) as opposed to point estimation. In our framework, the
balancing weights are interpreted as the Riesz representer for the moment conditions of the linear
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functional models. Notably, since our framework allows the Riesz representer to take negative
values, we are able to cover examples beyond the treatment effect or missing data analysis, such
as weighted average derivatives, effects of policy interventions, data combination models, and
bounds on consumer surplus. Our weighting scheme is composed of two steps. In the first step,
we compute estimates of the Riesz representer for each observation using a projection argument.
These estimates, called the projection weights, may take negative values, so they can be applied
for general linear models. Then, in the second step, we re-weigh the moment conditions so that
the resulting objective function admits an asymptotic chi-square calibration. In particular, in
the second step, we capture the nonparametric likelihood increment in going from the baseline
likelihood based on the projection weights to the one obtained by adding the identifying moment
conditions for the parameters of interest. Since our likelihood ratio statistic is asymptotically
pivotal, the resulting confidence set circumvents estimation of the asymptotic variance, which
typically involves several nonparametric components (e.g., conditional means and variances and
the Riesz representer). Also the confidence set is range preserving and transformation respecting,
and its shape is determined by the data.

Our re-weighting method for constructing asymptotically pivotal statistics can be naturally
extended for inference on treatment effect and data combination models. For treatment effects,
we can employ empirical projection weights - which are similar to the empirical balancing weights
of Hainmueller (2012) and Chan, Yam and Zhang (2016) - and reweigh the moment conditions
in the second step to yield an asymptotically pivotal likelihood ratio statistic. Our approach
is general enough to cover average and quantile treatment effects, among other quantities. For
the data combination models, we consider the setup of Chen, Hong and Tarozzi (2008) and the
Reisz representer is then related to projection weights that approximate the odds ratio of the
propensity scores. Our simulation evidence and empirical example illustrate the usefulness of
the proposed method.

We emphasize that treatment effect analysis is just one example in our framework. It can also
be applied to settings such as effects of policy interventions and bounds on consumer surplus.
More broadly, this paper contributes to the literature of estimation and inference on semipara-
metric models via the Riesz representer. For example, Newey and Robins (2018) first introduced
a series-based estimator for the Riesz representer and considered estimation of finite dimensional
parameters with fast decays for the remainders. Chernozhukov, Newey and Singh (2020) con-
sidered L1-regularized Riesz representers for high dimensional scenarios. Hirshberg and Wager
(2018) proposed to estimate the Riesz representer by applying the minimax approach. However,
none of these papers focuses on likelihood-based inference on finite dimensional parameters by
developing a asymptotically pivotal statistic.

This paper also contributes to the literature on empirical likelihood methods (see, Owen,
2001, for a survey). Qin and Zhang (2007) introduced the empirical likelihood approach for
missing response problems with parametric propensity scores. Subsequently, Qin, Zhang and
Leung (2009) proposed a unified empirical likelihood approach to missing data problems. We
refer Qin (2017) for a comprehensive survey on the empirical likelihood methods, particularly
in the context of missing and biased samples.
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This paper is organized as follows. Section 2 introduces the basic setup and some examples.
In Section 3, we develop the re-weighted nonparametric likelihood ratio statistic. Section 4 dis-
cusses extensions to inferences on treatment effects, data combination models, high-dimensional
covariates by approximate balancing, and over-identified models. Sections 5 and 6 present sim-
ulation results and a real data example, respectively.

2. Setup and examples

Our dataset consists of a random sample of (X,Y ) ∼ P with support X ×Y ⊆ Rdx ×Rdy . Let
E[·] be expectation under P and L2

X = {f : X → R,E[f(X)2] < ∞}. We consider inference on
a finite dimensional vector of parameters θ0 ∈ Θ ⊆ Rdθ that can be identified by the moment
conditions

E[m(X, γ(l)
θ0
, θ0)] = 0 for l = 1, . . . , dθ, (1)

where for each x ∈ X and θ ∈ Θ, γ 7→ m(x, γ, θ) is a known linear mapping such thatm(x, γ, θ)−
m(x, 0, θ) is linear in γ ∈ L2

X , and γ
(l)
θ0

(·) = E[h(l)(Y,X, θ0)|X = ·] ∈ L2
X is the conditional

expectation function for some known function h(l) : Y × X ×Θ→ R.
Based on this moment condition, we are interested in testing the parameter hypothesis

H0 : θ0 = c against H1 : θ0 6= c,

for a given c ∈ Rdθ . Assume that γ 7→ E[m(X, γ, θ0)] is a continuous mapping on L2
X . Then by

the Riesz representation theorem, there exists a unique Riesz representer αθ0 : X → R such that

E[m(X, γ, θ0)−m(X, 0, θ0)] = E[αθ0(X)γ(X)] for each γ ∈ L2
X . (2)

By (2) and the law of iterated expectations, the moment condition (1) can be alternatively
written as

E[αθ0(X)h(l)(Y,X, θ0) +m(X, 0, θ0)] = 0 for l = 1, . . . , dθ. (3)

Note that (1) does not restrict how θ0 enters to m or h. Therefore, γθ0 and/or αθ0 may depend
on θ0 in possibly nonlinear manners.

This setup nests many well-known statistical inference problems. We give some examples
below. Further examples are provided in Section 4.

Example 1 (Missing data model). Consider a sequence of random variables {Y1i, Zi}Ni=1, where
Y1i is observed only for a limited selection of individuals, and Zi is a observable vector of
covariates. In particular, we observe Yi = Y1iDi for all i = 1, . . . , N , where Di is the selection
indicator (taking the value of one if Y1i is observable, and zero otherwise). We wish to conduct
statistical inference on the parameter θ0, which is identified by the moment condition

E[ψ(Y1, Z, θ0)] = 0, (4)

where ψ is possibly nonlinear in θ0. Let X = (D,Z), h(Y,X, θ0) = ψ(Y,Z, θ0), and γθ0(d, z) =
E[h(Y,Z, θ0)|D = d, Z = z]. Further assume that ignorability (i.e., Y1 ⊥ D|X) and overlap
assumptions hold. Then it is easy to see that the identifying moment (4) can be rewritten as
E[γθ0(1, Z)] = 0. In this case, m(X, γθ0 , θ0) = γθ0(1, Z), and the Riesz representer is written as
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αθ0(d, z) = d
P(D=1|Z=z) so that

E[αθ0(X)h(Y,X, θ0)] = 0. (5)

Example 2 (Average effect after policy intervention). Let γ0(x) = E[Y |X = x] be the condi-
tional expectation and π(·) be a known policy function shifting the distribution of X to π(X)
after the policy intervention. The average policy effect is defined as E[γ0(π(X))] − E[γ0(X)].
The first term θ0 = E[γ0(π(X))] can be analyzed by setting m(x, γ0, θ0) = γ0(π(x)) − θ0 and
h(y, x) = y. Then the Riesz representer can be found by applying change of measure so that
α0(x) = dFπ

dF (x), where Fπ is the cdf of π(X), and E[α0(X)h(Y,X)− θ0] = 0.

Example 3 (Bound on average equivalent variation and cosumer surplus). Let P1 and P2 denote
the price of good 1 and a vector of prices of other goods in the consumption set, respectively.
Also let V and Q be consumer’s income and the quantity of good 1 bought by the consumer,
respectively. We are interested in determining an upper bound θ0 on the average equivalent
variation for a price change from pa to pb of good 1, averaged over the other prices P2 and
income V . Let B denote a lower bound on the income effect for all individuals. Hausman and
Newey (2017) showed that

θ0 = E[
∫
l(p, V )γ0(p, P2, V )dp],

where l(p, V ) = w(V )I{pa ≤ p ≤ pb} exp(−B(p − pa)) with some known function w, and
γ0(P1, P2, V ) = E[Q|P1, P2, V ]. It is easy to see that this setting can be subsumed into our
framework by letting X = (P1, P2, V ), and m(X, γ0, θ0) =

∫
l(p, V )γ0(p, P2, V )dp − θ0. The

bound on the consumer surplus can be obtained similarly: we simply get rid of the conditioning
variable P2 in the above setup.

Example 4 (Average derivative). Consider the average partial derivative of the regression
function γ0(x) = E[Y |X = x]:

θ0 = E
[
w(X)∂γ0(X)

∂x

]
,

for some known weight function w(· ). In this case, γθ0 and h(Y,X, θ0) do not involve θ0, and we
set as m(x, γ0, θ0) = w(x)dγ0(x)

dx − θ0 and h(y, x) = y. Assuming w(x) = 0 at boundaries of X ,
the Riesz representer is obtained as αθ0(x) = − 1

fX(x)
d[w(x)fX(x)]

dx , where fX is the density of X.

3. Reweighted nonparametric likelihood inference

In this section we present our inference method for θ0 defined by the linear functional model
in (1), or alternatively (3). Let {qj(·)}∞j=1 denote basis functions for the space L2

X . Then the
condition for the Riesz representer αθ0 in (2) is equivalent to the infinite set of moment conditions

E[m(X, qj , θ0)−m(X, 0, θ0)− αθ0(X)qj(X)] = 0, for all j = 1, 2, . . . . (6)

The equivalence between (2) and (6) exploits the fact that γ 7→ m(·, γ, ·) is an linear functional,
which ensures that for each γ ∈ L2

X , there exists some sequence {ξj}∞j=1 satisfying
∑∞
i=1 ξ

2
j <∞

and E[m(X, γ, θ0)−m(X, 0, θ0)] =
∑∞
j=1 ξjE[m(X, qj , θ0)− E[m(X, 0, θ0)].
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To approximate the Riesz representer αθ0 , we employ a finite but growing number of the
moment conditions from (6). Let QK(· ) = (q1(·), . . . , qK(·))′ denote a vector of basis func-
tions of dimension k, and MK(Xi, θ0) denote a K-dimensional vector whose k-th element is
m(Xi, qk, θ0)−m(Xi, 0, θ0) for k = 1, . . . ,K. As in Newey and Robins (2018), we approximate
{αθ0(Xi)}Ni=1 by the projection weights {α̂i}Ni=1, which are obtained as a solution of

min
α1,...,αN

1
2

N∑
i=1

α2
i s.t. 1

N

N∑
i=1
{MK(Xi, θ0)− αiQK(Xi)} = 0,

i.e.,

α̂i = QK(Xi)′
[

1
N

N∑
i=1

QK(Xi)QK(Xi)′
]−1

1
N

N∑
i=1

MK(Xi, θ0), (7)

for i = 1, . . . , N . Following Qiu (2020), one can interpret E[αθ0(X)2] as the residual variance for
estimation of θ0, and supγ∈L2

X
E[m(X, γ, θ0) − αθ0(X)γ] as the residual bias. Thus, (7) has an

attractive interpretation of minimizing the empirical variance subject to a zero empirical bias
constraint within the sieve space spanned by QK(·).

The construction of (7) is similar to, but distinct from, the empirical balancing weights that
have been proposed in the literature on missing data, see e.g., Zubizarreta (2015), Chan, Yam
and Zhang (2016), and Qiu and Otsu (2018). Recall that in Example 1 on missing data models,
the Riesz representer is expressed as αθ0(Di, Zi) = Di/P(Di = 1|Zi). The empirical balancing
weights estimate the ‘tilting function’, 1/P(Di = 1|Zi), instead of directly estimating αθ0(Di, Zi).
Although the estimates of αθ0(Di, Zi) are only computed for observations without missing out-
comes (but note that αθ0(Di, Zi) = 0 when Di = 0 anyway), given the empirical balancing
weights (say, ŵi), it is straightforward to obtain the estimates α̂i of αi as α̂i = ŵi when Di = 1,
and α̂i = 0 otherwise. A drawback of the empirical balancing weights, however, is that they are
not applicable more generally, e.g., to average derivative estimation, where the Riesz representer
may take negative values.

Based on the projection weights {α̂i}Ni=1 in (7), we now construct our nonparametric like-
lihood function. The basic idea is to ‘re-weigh’ both the moment functions (2) and (3) after
incorporating the the projection weights in (7). The ’re-weighted’ likelihood ratio then captures
the likelihood increments associated with (3). Formally, let

φς(ω) = 2
ς(ς + 1){(Nω)ς − 1},

denote the Cressie and Read (1984) power divergence family if ς 6= −1, 0, otherwise φ−1(ω) =
−2 log(nω) and φ0(ω) = 2nω log(nω). The cases of ς = −1 and ς = 0 are often called empirical
likelihood and exponential tilting, respectively. Other popular choices for ς include the Neyman’s
modified χ2 (ς = 1), Hellinger or Freeman-Tukey (ς = −1/2), and Pearson’s χ2 (ς = −2). Based
on this divergence, we consider the following re-weighting scheme:

`(θ0) = min
ω1,...,ωN

N∑
i=1

φς(ωi),
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s.t.
N∑
i=1

ωi{MK(Xi, θ0)− α̂iQK(Xi)} = 0,
N∑
i=1

ωi = 1, ωi ≥ 0,

N∑
i=1

ωi{α̂ih(l)(Yi, Xi, θ0) +m(Xi, 0, θ0)} = 0 for l = 1, . . . , dθ, (8)

where {α̂i}Ni=1 are the projection weights obtained in (7). Note that without the last condition
in (8) (corresponding to the primary moment condition), the above maximization problem is
solved by uniform weights ωi = 1/N for all i = 1, . . . , N (because of (7)). Therefore, the above
minimum `(θ0) indeed corresponds to the likelihood increment by adding the last condition in
(8). Let

gKi =


MK(Xi, θ0)− α̂iQK(Xi)

α̂ih
(1)(Yi, Xi, θ0) +m(Xi, 0, θ0)

...
α̂ih

(dθ)(Yi, Xi, θ0) +m(Xi, 0, θ0)

 .
By applying the Lagrange multiplier method, the dual representation of the re-weighted non-
parametric likelihood ratio statistic is

`(θ0) = max
λ

2
N∑
i=1
{ρς(λ′gKi )− ρς(0)}, (9)

where
ρς(v) = − 1

ς + 1(1 + ςv)(ς+1)/ς ,

if ς 6= −1, 0, otherwise ρ−1(v) = log(1 − v) and ρ0(v) = −ev. In practice, we employ this dual
form to implement our inferential procedure.

To derive the limiting distribution of `(θ0), we impose the following assumptions. Let ζK =
sup
x∈X
|QK(x)|, εK(x) = αθ0(x)QK(x)−MK(x, θ0), ζε,K = sup

x∈X
|εK(x)|, and m̃(x, ·, θ0) = m(x, ·, θ0)−

m(x, 0, θ0).

Assumption.

(i): {Xi, Yi}Ni=1 is iid. For each x ∈ X , γ 7→ m(x, γ, θ0) is an linear mapping, and γ 7→
E[m(x, γ, θ0)] is a continuous mapping from L2

X to R.
(ii): All eigenvalues of E[QK(X)QK(X)′] and E[εK(X)εK(X)′] are bounded from above

and away from zero for each K ∈ N, ζ2
K logK
N → 0, and ζ2

ε,K logK
N → 0.

(iii): max1≤i≤N |α̂i − αθ0(Xi)| = Op(δα,N ) for some δα,N → 0. For each l = 1, . . . , dθ and
K ∈ N, there exists some β(l)

K ∈ RK such that supx∈X |γ
(l)
θ0

(x) − β(l)′
K QK(x)| . ηK and

E[m̃(X, γ(l)
θ0
− β(l)′

K QK , θ0)2] . η̃K for some η̃K → 0.
(iv): For each l = 1, . . . , dθ, it holds sup

x∈X
E[{h(l)(X,Y, θ0)−γ(l)

θ0
(X)}2|X = x] . 1, E[{α0(X)γ(l)

θ0
(X)−

m̃(X, γ(l)
θ0
, θ0)}2] . 1, E[m(X, γ(l)

θ0
, θ0)2] . 1, sup

x∈X
|αθ0(x)| . 1, and there exists some

κ > 2 such that E[|h(l)(X,Y, θ0)|κ] . 1 and N1/κδα,N → 0.
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(v): For each j, k = 1, . . . ,K,

E[m̃(X, qj(·)m̃(·, qk, θ0), θ0)] = E[m̃(X, qj , θ0)m̃(X, qk, θ0)], (10)

E[m̃(X,m(·, 0, θ0)qj(·), θ0)] = E[m(X, 0, θ0)m̃(X, qj , θ0)].

Assumption (i) is reasonable for all the examples listed in this paper. An extension to depen-
dent data is left for future research. Assumption (ii) is on the vector of basis functions QK(·) and
the approximation error εK(·). The first condition in Assumption (iii) imposes a basic approxi-
mation quality of α̂i in terms of sup norm. This could be verified by more primitive conditions;
see Newey and Robins (2018). The second condition in Assumption (iii) is on the approximation
error for the conditional mean function γ(l)

θ0
(·) by the vector of basis functions QK(·). Assump-

tion (iv) is a set of regularity conditions. Notably, we require the Riesz representer αθ0 to be
bounded, and existence of higher moments for h.

Assumption (v) is a key requirement that needs to be checked for each application. It can
be thought of as placing some constraints on the form of m(·). All our examples satisfy this
assumption except for the average derivative example. The assumption is trivially satisfied if the
moment function is multiplicative in γ (in addition to being linear). For instance, in the missing
data example, m(X, 0, θ0) = 0 and m̃(X, γθ0 , θ0) = γθ0 , and it is easy to see that (10) is satisfied.
A similar reasoning also applies to the average effect after policy intervention. For the average
equivalent variation and consumer surplus example, m(X, γ0, θ0) =

∫
l(p, V )γ0(p, P2, V )dp− θ0,

and so m(x, 0, θ0) = −θ0 and m̃(x, γ0, θ0) =
∫
l(p, V )γ0(p, P2, V )dp. The second equation of (10)

is satisfied trivially. As for the first equation:

E[m̃(X, qj(·)m̃(·, qk, θ0), θ0)] = E

∫ l(p, V )qj(p, P2, V )
∫
l(p, V )qk(p, P2, V )dp︸ ︷︷ ︸ dp


= E

∫ l(p, V )qk(p, P2, V )dp︸ ︷︷ ︸
∫
l(p, V )qj(p, P2, V )dp


= E[m̃(X, qj , θ0)m̃(X, qk, θ0)],

where we can take ·︸︷︷︸ out since it is not a function of p.
For the average derivative example, equation (10) is not generally satisfied. One exception

is the setting where w(x) = 1 and d2qk(x)/dx2 = 0 for all k, i.e., the basis functions all have
zero second derivatives. This implies that the assumption is valid if one employs basis functions
of indicator or linear form, such as linear regression splines or Strömberg wavelets of order 0
(assuming compact support for X and that its density fX(·) is bounded).

Based on these assumptions, the asymptotic distribution of the likelihood ratio statistic `(θ0)
is obtained as follows.

Theorem. Suppose Assumption (i)-(iv) hold true. In addition, δα,NζKζε,K → 0,
√
KηK → 0,

√
Nδα,NηK → 0. Then

`(θ0) d→ χ2
dθ
, as N →∞.

This theorem says that our likelihood ratio statistic is asymptotically pivotal and converges
to the chi-squared distribution under the null hypothesis. Based on this result, the 100(1−α)%
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asymptotic confidence set for θ0 can be given by {θ : `(θ) ≤ χ2
dθ,α
}, where χ2

dθ,α
is the (1−α)-th

quantile of the χ2
dθ

distribution. Furthermore, it is straightforward to extend this theorem for
testing the null H0 : r(θ) = r0 for a possibly nonlinear function r : Rdθ → Rdr with dr ≤ dθ. In
this case, the likelihood ratio statistic is obtained by minθ:r(θ)=r0 `(θ), which can be shown to
converge to the χ2

dr
distribution.

If Assumption (v) is violated, the re-weighted statistic `(θ0) loses its asymptotic pivotal-
ness and converges to a weighted χ2 distribution, where the weights involve unknown com-
ponents. In particular, suppose the condition (5) does not hold but δα,NζKζ3

ε,K → 0 and
1
N

∑N
i=1 Pi(m(γ0)|εK)Pi(m(γ0)|εK) p→ V ∗ for some dθ × dθ matrix V ∗, where Pi(m(γ0)|εK) is

the empirical projection of m(γ0) = (m(X1, γ0, θ0), . . . ,m(XN , γ0, θ0))′ with m(Xi, γ0, θ0) =
(m(Xi, γ

(1)
0 , θ0), . . . ,m(Xi, γ

(dθ)
0 , θ0))′ on εK = (εK(X1), . . . , εK(XN ))′. Then by inspection the

proof of this theorem, we obtain

`(θ0) d→ U ′(V − V ∗)U, as N →∞,

where U ∼ N(0, V ) and V is the variance matrix of the dθ-dimensional random vector whose l-th
element is m(X, γ(l)

0 , θ0) +α0(X){h(l)(X,Y, θ0)−γ(l)
θ0

(X)}. One may conduct inference based on
this limiting distribution by estimating the variance components V and V ∗, or by bootstrapping
(see, Section 2.3 of Hjort, McKeague and Van Keilegom, 2009). However, given the asymptotic
pivotalness in our theorem, we recommend employing basis functions QK(·) that satisfy the
condition in (3).

The proof of this theorem indicates that under our assumptions, our likelihood ratio statistic
has the same local power function as the Wald or t-test based on the globally semiparametric
efficient estimator. However, in contrast to the Wald test, we circumvent estimation of the
asymptotic variance which can be quite involved.

4. Extensions

4.1. Treatment effects. It is straightforward to extend our likelihood ratio construction to
conduct inference on various measures of treatment effects under unconfoundedness. Let Y1 and
Y0 be potential outcomes associated with a binary treatment variable D ∈ {0, 1}. The observed
outcome is Y = DY1 + (1−D)Y0. Let Z be a vector of covariates. Suppose we want to conduct
inference on the parameter θ0 identified by the moment condition

E[ψ1(Y1, Z, θ0)− ψ0(Y0, Z, θ0)] = 0, (11)

where ψ1 and ψ0 have the same dimension as θ0. This setup accommodates many popu-
lar inferential problems as special cases. For example, if we set ψ1(Y1, X, θ0) = Y1 − θ0 and
ψ0(Y0, X, θ0) = Y0, then θ0 is the average treatment effect.

To see how this fits into our setup, let us denoteX = (D,Z), γ(1)
θ0

(D,Z) = E[ψ1(Y, Z, θ0)|D,Z]
and γ(0)

θ0
(D,Z) = E[ψ0(Y, Z, θ0)|D,Z]. Under conditional independence assumption, (11) can be

rewritten as
E[γ(1)

θ0
(1, Z)− γ(0)

θ0
(0, Z)] = 0. (12)
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Further, under the overlap condition, (11) gives rise to the two Riesz representers α(1)
θ0

(x) =
d

P(D=1|Z=z) and α(0)
θ0

(x) = 1−d
1−P(D=1|Z=z) for x = (d, z) so that

E[α(1)
θ0

(X)γ(X)] = E[γ(X)], for each γ ∈ L2
X ,

E[α(0)
θ0

(X)γ(X)] = E[γ(X)], for each γ ∈ L2
X .

Again, we consider the testing problem H0 : θ0 = c against H1 : θ0 = c. Note that the identifying
moment for θ0 is

E[α(1)
θ0

(X)ψ1(Y,Z, θ0)− α(0)
θ0

(X)ψ0(Y, Z, θ0)] = 0, (13)

Applying our methodology, in the first step we calibrate two sets of projection weights
{α̂(1)

i }Ni=1 and {α̂(0)
i }Ni=1 according to

min
α

(1)
1 ,...,α

(1)
N

1
2

N∑
i=1

Dα2
i s.t. 1

N

N∑
i=1
{QK(Xi)− α(1)

i DiQK(Xi)} = 0;

min
α

(0)
1 ,...,α

(0)
N

1
2

N∑
i=1

(1−D)α2
i s.t. 1

N

N∑
i=1
{QK(Xi)− α(0)

i (1−Di)QK(Xi)} = 0;

Based on the approximated Riesz representers {Dα̂(1)
i }Ni=1 and {(1−Di)α̂(0)

i }Ni=1, our reweighted
likelihood ratio statistic can be constructed as

¯̀(θ0) = min
ω1,...,ωN

N∑
i=1

φς(ωi),

s.t.
N∑
i=1

ωiQK(Xi)(α̂(1)
i Di − 1) = 0,

N∑
i=1

ωiQK(Xi)(α̂(0)
i (1−Di)− 1) = 0,

N∑
i=1

ωi = 1, ωi ≥ 0,

N∑
i=1

ωi{α̂(1)
i Diψ1(Yi, Xi, θ0)− α̂(0)

i (1−Di)ψ0(Yi, Xi, θ0)} = 0.

The dual form of ¯̀(θ0) is obtained in the same manner as `(θ0). Also, under analogous con-
ditions to the ones in the Theorem, it can be shown that −2¯̀(θ0) d→ χ2

dθ
under H0, where dθ

is the dimension of θ0. Again, our likelihood ratio statistic is asymptotically pivotal, and is
free from variance estimation. If we are interested in some p1-dimensional function r(β) (e.g.,
quantile treatment effects), the likelihood ratio statistic for H0 : r(β) = r0 can be modified as
minβ:r(β)=r0

¯̀(β) d→ χ2
p1 .

4.2. Data combination models. Data combination models are another important class of
missing data models. Let W = (Y1, Y0, Z

′)′ denote a vector of random variables from a study
population. We are interested in conducting inference for the dθ-dimensional vector of parame-
ters, θ0, which is just-identified by the moment condition

Es[ψ(W, θ0)] = 0,

where Es[·] denotes the expectation under the study sample. However we do not observe the
entire vector W . Rather, we only observe Ns measurements of (Y1, Z

′)′ from the study sample,

9



but we have access to Na measurements of (Y0, Z
′)′ drawn from an auxiliary sample. Thus the

variables Z are common to the both samples.
We shall assume that the conditional distribution of Y0 given Z is the same in the both

samples (however the marginal distributions of Z may differ). Also, we assume that the support
of Z in the auxiliary sample is at least as large as the study sample. Under these conditions,
Chen, Hong and Tarozzi (2008) showed that the parameter vector θ0 is identified as long as ψ(·)
is separable in Y1 and Y0 in the sense that

ψ(Y1, Y0, Z, θ0) = ψs(Y1, Z, θ0)− ψa(Y0, Z, θ0),

for some ψs(·) and ψa(·). This framework covers many important statistical problems including
estimation of the average treatment effect on the treated (ATT), two-sample instrumental vari-
ables (Angrist and Krueger, 1992), counterfactual distributions (Dinardo, Fortin and Lemieux,
1996), semiparametric differences-in-differences (Abadie, 2005), and models with mismeasured
regressors in the presence of validation samples (Carroll and Wand, 1991).

Following Graham, Pinto and Egel (2016), we employ a multinomial sampling framework
by assuming that a unit is drawn at random from the distribution of the study sample with
probability π, and from that of the auxiliary sample with probability 1 − π. Let D denote a
binary random variable that takes value 1 when the observation is in the study sample and 0
when it is in the auxiliary sample. Under this framework we can treat the ‘merged’ realization
(Di, Zi, DiY1i, (1 − Di)Y0i) as a random draw from a synthetic ‘merged’ population (Graham,
Pinto and Egel, 2016). Let P(·) and E[·] denote the probability and expectation, respectively,
in this merged population. Finally, let Y = DY1 + (1 − D)Y0 denote the observed ‘outcome’
variable.

This set of models also fits into our current setup. To observe this, let us denote X = (D,Z),
γ

(1)
θ (D,Z) = E[ψs(Y,Z, θ0)|D,Z] and γ

(2)
θ (D,Z) = E[ψu(Y, Z, θ0)|D,Z]. Then the identifying

moment condition can be rewritten as∫
{γ(1)

θ (z, 1)− γ(2)
θ (z, 0)}dFs(z) =

∫
{γ(1)

θ (z, 1)− γ(2)
θ (z, 0)}dFs(z)

dF (z) dF (z) = 0.

The support condition above assures existence of some κ > 0 such that κ ≤ P(D = 1|Z = z) ≤ 1
for all z ∈ RdZ . Importantly, we do not place any functional form assumptions on the propensity
score, apart from some smoothness assumptions. As before, we consider the testing problem
H0 : θ = θ0 against H1 : θ 6= θ0, which is equivalent to test the identifying moment

E
[
Dψs(W,X, θ0)− (1−D) P(D = 1|Z)

1− P(D = 1|Z)ψa(W,X, θ0)
]

= 0,

subject to the auxiliary moment conditions identifying the Riesz representer as αθ0(x) = (1 −
d) P(D=1|Z=z)

1−P(D=1|Z=z) since

E[αθ0(X)γ(X)] = E[Dγ(X)], for each γ ∈ L2
X ,

(see, Graham, 2011). Let N = Na + Ns. We shall order the observations such that the first
Na terms correspond to the auxiliary sample (i.e., Di = 0 for i = 1, . . . , Na and 1 for i =
Na + 1, . . . , N). The projection weights (α̃1, . . . , α̃Na) for data combination models are obtained
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as the solution of

min
α1,...,αN

N∑
i=1

1
2(1−D)α2

i s.t. 1
N

N∑
i=1

DiQK(Xi) = 1
N

N∑
i=1

α̃i(1−Di)QK(Xi).

In this case, our likelihood ratio statistic is obtained as

˜̀(θ0) = max
ω1,...,ωN

N∑
i=1

φς(ωi),

s.t.
N∑
i=1

ωi{Di − α̃i(1−Di)}QK(Xi) = 0,
N∑
i=1

ωi = 1, ωi ≥ 0

N∑
i=1

ωi{Diψs(Wi, Xi, θ0)− (1−Di)α̃iψa(Wi, Xi, θ0)} = 0.

The dual form of ˜̀(θ0) is obtained in the same manner as `(θ0). Also under analogous conditions
to the ones in Theorem, it can be shown that ˜̀(θ0) d→ χ2

dθ
under H0, where dθ is the dimension

of θ0.

4.3. Over-identified models. Thus far we have considered inference under just-identification.
In some applications however, the parameters β could be over-identified (e.g., moment conditions
with side information, and two-sample instrumental variable models with more instruments than
regressors). While our testing procedure still controls size in such contexts, it is no longer first-
order efficient. In this section we show how it can be modified to recover efficiency.

Consider the missing data setup in Section 2. Suppose now that the dimension p1 of the
moment function ψ(·) is greater than p, the dimension of β. Then we can construct a likeli-
hood ratio test by considering the discrepancy in the log-likelihoods evaluated at the estimated
and hypothesized values of β. In particular, based on the likelihood ratio statistic in (8), the
likelihood ratio test statistic for testing H0 : β = β0 against H1 : β 6= β0 is given by

`R(β0) = `(β0)−min
β
`(β).

Under analogous conditions to the Theorem in Section 3, it can be shown that `R(β0) d→ χ2
p

under H0. Note that the degree of freedom of the limiting distribution is p, the dimension of
β. On the other hand, the statistic `(β0) converges to the chi-square distribution with degree of
freedom p1, the dimension of ψ.

5. Simulation

In this section, we study the finite sample performance of the proposed likelihood ratio test.
We consider three different data generating processes (DGPs). The first DGP (DGP1) is taken
from Abadie and Imbens (2016, Supplementary material), adapted for the case of missing data.
We generate a two dimensional vector (Z1, Z2) of covariates by drawing both variables from a
uniform [−1/2, 1/2] distribution independently of each other. The ‘true’ outcome variable is
generated as Y1 = 5 + 2Z1 + 4Z2 + U , where U is a standard normal random variable. The
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Table 1. Rejection frequencies under the null for inference on βa

N = 100 N = 200 N = 500 N = 5000
K = 3 K = 5 K = 3 K = 5 K = 3 K = 5 K = 3 K = 5

DGP1 LR 0.067 0.077 0.056 0.062 0.057 0.063 0.048 0.054
Wald 0.064 0.074 0.057 0.062 0.058 0.063 0.047 0.054

DGP2 LR 0.092 0.119 0.074 0.082 0.054 0.066 0.059 0.056
Wald 0.098 0.118 0.076 0.085 0.056 0.066 0.058 0.056

DGP3 LR 0.105 0.147 0.083 0.102 0.079 0.065 0.126 0.057
Wald 0.143 0.226 0.102 0.122 0.091 0.071 0.129 0.058

propensity score is given by the logistic function

P(D = 1|Z) = exp(Z1 + tZ2)
1 + exp(Z1 + tZ2) . (14)

The treatmentD is generated by this probability, and the observed outcome variable is generated
by Y = DY1. For DGP1, we choose t = 2. The second DGP (DGP2) differs from DGP1
only in the choice of t: in particular, we set t = 4. The effect of increasing t is to reduce
the amount of overlap in the propensity score. For the third DGP (DGP3), we generate a
two-dimensional vector (Z1, Z2) of covariates by drawing both variables (independently of each
other) as Za ∼ 2V − 1 for a = 1, 2, with V ∼ beta(2, 4). The unobserved outcome variable is
generated as Y1 = 5 + Z2

1 + Z2
2 + U . The remainder of DGP3 follows the same construction as

DGP1, i.e., we obtain the propensity scores by setting t = 2 in (14). Compared to DGP1, the
distribution of Y is more asymmetric due to the use of an asymmetric beta distribution for the
covariates. Additionally, the underlying model for Y1 is more non-linear.

We first consider inference on the average outcome βa = E[Y1]. Table 1 reports the perfor-
mance of the likelihood ratio (LR) procedure for inference on βa under the null, along with infer-
ence based on the Wald statistic using the variance estimate proposed by Chan, Yam and Zhang
(2016). The nominal significance level is 0.05. For all DGPs, we report results with K = 3, cor-
responding to qK(X) = (1, Z1, Z2)′, and K = 5, corresponding to qK(X) = (1, Z1, Z2, Z

2
1 , Z

2
2 ).

All the simulation results are based on 2,500 Monte Carlo repetitions.
From Table 1, we can observe that when the DGP is linear and the overlap is good (e.g.,

DGP1 and DGP2), both the LR and Wald procedures behave very similarly. However, when
there is non-linearity in the covariates and the underlying distribution is asymmetric, the LR
procedure provides more accurate inference, as seen in the simulation results for DGP3.

Next we consider inference on the median outcome βm = median(Y1). Here the ‘identifying’
moment condition for βm is given by E[I{Y < βm} − 0.5] = 0. Table 2 reports the performance
of the LR procedure for inference on βm under the null for all the DGPs. Again the nominal
significance level is 0.05. The LR procedure provides excellent size control for all DGPs, with
the proviso that one employs a proper choice of K for DGP3. Note also that the Wald statistic
is difficult to obtain here due to the complicated nature of the variance estimate for quantile
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Table 2. Rejection frequencies under the null for inference on βm

N = 100 N = 200 N = 500 N = 5000
K = 3 K = 5 K = 3 K = 5 K = 3 K = 5 K = 3 K = 5

DGP1 0.056 0.067 0.058 0.052 0.048 0.047 0.056 0.053

DGP2 0.072 0.098 0.054 0.076 0.058 0.055 0.091 0.063

DGP3 0.128 0.206 0.097 0.101 0.069 0.080 0.088 0.049

estimators; indeed we are not aware of any variance estimate that has been proposed for this
context.

6. Real data example

We illustrate our inferential procedure by applying it on data taken from the influential study
of Card and Krueger (1994). These authors were interested in studying the effect of the raise,
in 1993, of New Jersey’s state minimum wage on employment. To this end, they collected
data on employment in fast food restaurants in New Jersey and neighboring Pennsylvania,
following the minimum wage hike. The restaurants in Pennsylvania, which did not witness a
change in the minimum wage, form the control group. While the original study was based
on a differences-in-differences design, later authors including Rosenbaum (2002) and Imbens
and Rubin (2015) re-analyzed the data as if it arose from an unconfoundedness assumption,
i.e., conditional on covariates, the probability of being treated (i.e., being from New Jersey as
opposed to Pennsylvania) does not depend on the potential outcomes. Subsequently, our results
in this section are based on the latter assumption.

The data consist of 273 restaurants from New Jersey (treated units), and 67 from Penn-
sylvania (control units). The covariate data consist of the following pre-treatment variables:
number of employed in each restaurant prior to minimum wage hike (empft), starting wages
(wage_st), average duration for the first raise (inctime), and indicators for the identity of the
chain: (burger king, kfc, roys, wendys). The outcome (Y) is the number of employed in each
restaurant after the increase in minimum wage (part time employees are weighted by 0.5). Our
parameter of interest, β0, is the average treatment effect on employment levels due to the mini-
mum wage hike.

To provide inference on β0, we consider two empirical balancing schemes: one where we only
balance a single covariate, empft, i.e., qK(X) = (1, empft), corresponding to K = 2; and the
other where we balance all the covariates Z, i.e., qK(X) = Z, corresponding to K = 7. The first
scheme in particular is based on the analysis of Imbens and Rubin (2015) who found that empft
was the only variable selected by their iterative balance checking algorithm for inclusion in the
propensity score. Table 3 presents 90 and 95% confidence regions for β0 based on our inferential
procedure, along with the Wald confidence regions. We also report the estimates, β̂, of β0 under
both K = 2 and 7. Both values are very close to the estimate of β̂m = 0.84 obtained by Imbens
and Rubin (2015) using matching.
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Table 3. Confidence regions for β0 using Likelihood Ratio and Wald procedures

K = 2 K = 7

Estimate β̂ = 0.840 β̂ = 0.873

90% CI 95% CI 90% CI 95% CI

LR [−0.782, 2.382] [−1.110, 2.682] [−0.608, 2.262] [−0.909, 2.527]

Wald [−0.766, 2.445] [−1.073, 2.753] [−0.590, 2.335] [−0.870, 2.615]

Appendix A. Mathematical appendix

Notation: Hereafter we use the following notation: Let |A| mean the Euclidean norm for
a vector A and the spectral norm for a matrix A, “wpa1” mean “with probability approaching
one”, and

hi = h(Yi, Xi, θ0), α0i = αθ0(Xi), γ0i = γθ0(Xi),

mi(γ0) = m(Xi, γ0, θ0), mi(0) = m(Xi, 0, θ0), m̃i(γ) = mi(γ)−mi(0),

QKi = QK(Xi), MKi = MK(Xi, θ0),

ε̂Ki = α̂iQKi −MKi, εKi = α0iQKi −MKi,

ε̂hi = α̂ihi − m̃i(γ0), εhi = α0ihi − m̃i(γ0),

ε̂γ0i = α̂iγ0i − m̃i(γ0), εγ0i = α0iγ0i − m̃i(γ0).

Also recall ζK = sup
x∈X
|QK(x)| and ζε,K = sup

x∈X
|εK(x)|. Let Pi(ai|ε̂Ki) = ε̂′Ki(ε̂′ε̂)−1ε̂′a for i =

1, . . . , N be the empirical projection of a vector a = (a1, . . . , aN )′ to ε̂ = (ε̂K1, . . . , ε̂KN )′.

A.1. Proof of Theorem. By Lemma 1 (iv), `(θ0) exists uniquely wpa1, and we can establish
a quadratic expansion of the dual form in (9) as

`(θ0) =
(

1√
N

N∑
i=1

gKi

)(
1
N

N∑
i=1

gKi g
K′
i

)−1(
1√
N

N∑
i=1

gKi

)
+RN , (15)

where RN is the remainder term. Based on Lemma 3 (v) and max1≤i≤N |gKi | ≤ max1≤i≤N |D1i|+
max1≤i≤N |D2i| = op(

√
N) (by Lemma 1 (i)-(ii)), a similar argument as that used in Hjort,

McKeague and Van Keilegom (2009, proof of Theorem 2.1, p. 1105) yields RN
p→ 0. Since∑N

i=1(MKi− α̂iQKi) = 0 (due to (7)), the definition of gKi and inversion formula for partitioned
matrices imply that the first term on the right hand side of (15) can be written as(

1√
N

N∑
i=1
{α̂ihi +mi(0)}

)′
[V̂0 − V̂1]−1

(
1√
N

N∑
i=1
{α̂ihi +mi(0)}

)
,

where V̂0 = 1
N

∑N
i=1{α̂ihi +mi(0)}2 and

V̂1 =
(

1
N

N∑
i=1
{α̂ihi +mi(0)}ε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1
{α̂ihi +mi(0)}ε̂Ki

)
.
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Now, Lemma 2 implies 1√
N

∑N
i=1{α̂ihi + mi(0)} d→ N(0, V ), and Lemma 4 implies V̂0 − V̂1

p→
V0 − V1. Since the condition in (10) guarantees V = V0 − V1, the conclusion follows.

On the other hand, if (10) does not hold, the conclusion follows by Lemma 6.

A.2. Lemmas.

Lemma 1. Let D1i = (ε′Ki, α0ihi + mi(0))′ and D2i = ((α̂i − α0i)Q′Ki, (α̂i − α0i)hi)′. Under
Assumptions 1-3, the following statements hold true.

(i): max1≤i≤N |D1i| = op(
√
N).

(ii): max1≤i≤N |D2i| = op(1).
(iii): all eigenvalues of E[D1iD

′
1i] are bounded away from zero for all K ∈ N.

(iv): P{0 ∈ Cn} → 1, where Cn is the interior of the convex hull of {gK+1
i , i = 1, . . . , N}.

Proof of (i): The triangle inequality implies max1≤i≤N |D1i| ≤ D11 +D12, where

D11 = max
1≤i≤N

|εKi|, D12 = max
1≤i≤N

|α0ihi +mi(0)|.

Note that D11 ≤ ζε,K = o(
√
N) by the definition of ζε,K and Assumption 2 (ii). Also, since

E[α0ihi +mi(0)]2 < ∞ by assumption, Owen (2001, Lemma 11.2) implies that D12 = op(
√
N).

Thus, we obtain the conclusion.
Proof of (ii): Note that for each ε > 0, there exists Cε > 0 such that

P
{

max
1≤i≤N

|hi| > n1/κCε

}
≤

N∑
i=1

P{|hi| > n1/κCε} ≤
E[|hi|κ]
Cκ

≤ ε,

where the first inequality follows from the union bound, the second inequality follows from
Markov’s inequality, and the last inequality follows from Assumption 3 (iii). Therefore, by
Assumption 3 (iii),

max
1≤i≤N

|D2i| ≤ δα,N
(

max
1≤i≤N

| QKi |+ max
1≤i≤N

|hi|
)

= δα,N (ζK +Op(n1/κ)) = op(1). (16)

Proof of (iii): Note that λmin{E[D1iD
′
1i]} = min{V̊ , λmin{E[εKiεKi]}, where

V̊ = E[α0ihi +mi(0)]2 − E[(α0ihi +mi(0))εKi]′ (E[εKiεKi])−1 E[(α0ihi +mi(0))εKi].

Similar to Lemma 4 (ii), we can show

E[(α0h+m(0))εQK ]′
(
E[εQKεQK ′]

)−1
E[(α0h+m(0))εQK ]

→ E[{α0iγ0i +mi(0)−mi(γ0)}2] + 2E[mi(γ0){α0iγ0i +mi(0)−mi(γ0)}

as well. Hence V̊ → E[mi(γ0)+α0i(hi−γ0i)]2 > 0 as well. And by assumption λmin(E[εQKεQK ′])
has all eigenvalues bounded away from zero by assumption. Conclusion follows.
Proof of (iv): Denote Ĥn(a) = min1≤i≤N (a′gK+1

i ). It suffices to show

P
{

max
a∈SK

Ĥn(a) < 0
}
→ 1, (17)

as n → ∞, where SK = {a ∈ RK+1 : |a| = 1}. To this end, let Hn(a) = min1≤i≤N (a′D1i).
Observe that |Ĥn(a) − Hn(a)| ≤ max1≤i≤N |a′D2i| ≤ max1≤i≤N |D2i| = op(1) for all a ∈ SK ,
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where the last inequality follows from Lemma 1 (i). Similarly, we have |Hn(a) − Hn(b)| ≤
|a− b|max1≤i≤N |D1i| ≤ |a− b|op(

√
N) for all a, b ∈ SK , where the last inequality follows from

Lemma 1 (ii). Let UN,K be the union of a finite number CK,N of rectangles with side length δN ,
where CK,NδK−1

N ≥ 2πK/2/Γ(K/2) for the gamma function Γ(·) [note: 2πK/2/Γ(K/2) is the the
surface area of of SK ]. It follows

max
a∈SK

Ĥn(a) ≤ max
a∈UN,K

Hn(a) + δn max
1≤i≤N

|D1i|+ max
1≤i≤N

|D2i|.

For (17), it is sufficient to show show that for each ε > 0,

P
{

max
1≤i≤N

|D2i| ≤
ε

2

}
→ 1, (18)

P
{
δN max

1≤i≤N
|D1i| ≤

ε

2

}
→ 1, (19)

P
{

max
a∈UN,K

Hn(a) < −ε
}
→ 1. (20)

The convergence in (18) is guaranteed by max1≤i≤N |D2i| = op(1). The convergence in (19)
is guaranteed by setting δN = ε

C
√
N

for some C > 0 since max1≤i≤N |D1i| = op(
√
N). By

Hjort, McKeague and Van Keilegom (2009, Lemma 4.2), the convergence in (20) is guaranteed if
K logN
N → 0 and E[D1iD

′
1i] has eigenvalues bounded away from zero, which follow by Assumption

2 and Lemma 1 (iii).

Lemma 2. Under the assumptions of Theorem, it holds 1√
N

∑N
i=1{α̂ihi + mi(0)} d→ N(0, V ),

where V = E[{mi(γ0) + α0i(hi − γ0i)}2].

Proof: Decompose 1√
N

∑N
i=1{α̂ihi +mi(0)} = 1√

N

∑N
i=1 φi + E1 + E2, where

φi = mi(γ0) + α0i(hi − γ0i),

E1 = 1√
N

N∑
i=1

(α̂i − α0i)(hi − γ0i), E2 = 1√
N

N∑
i=1

(α̂iγ0i − m̃i(γ0)).

Since 1√
N

∑N
i=1 φi

d→ N(0, V ) by the central limit theorem, it is sufficient for the conclusion to
show that E1

p→ 0 and E2
p→ 0.

Since E[hi − γ0i|Xi = x] = 0 (by the definition of γ0), the law of iterated expectations yields

E[E1] = 1√
N

N∑
i=1

E [(α̂i − α0i)E[hi − γ0i|X1, · · ·XN ]] = 0.

Also as sup
x∈X

E[(hi − γ0i)2|Xi = x] . 1, the same argument in Qiu (2020, Lemma S4) implies

V ar

(
1√
N

N∑
i=1

(α̂i − α0i)(hi − γ0i)
)

. E
[
V ar

(
1√
N

N∑
i=1

(α̂i − α0i)(hi − γ0i)
∣∣∣∣∣X1, · · · , XN

)]

= 1
N

N∑
i=1

E[(α̂i − α0i)2V ar(hi − γ0i|X1, · · · , XN )] = 1
N

N∑
i=1

E[(α̂i − α0i)2V ar(hi − γ0i|Xi)]

.
1
N

N∑
i=1

E(α̂i − α0i)2 ≤ sup
x∈X
|α̂(x)− α0(x)|2.

16



Thus, Markov’s inequality and Assumption 1 (iv) imply E1
p→ 0.

We now show E2
p→ 0. By linearity of m̃ and γ0i = β′KQKi+rKi, we have E2 = E21+E22+E23,

where

E21 = 1√
N

N∑
i=1

β′K(α̂iQKi −MKi), E22 = 1√
N

N∑
i=1

(α0irKi − m̃(rKi)),

E23 = 1√
N

N∑
i=1

(α̂i − α0i)rKi.

Note that E21 = 0 by the construction of α̂i in (7). For E22, note that E[α0irKi − m̃(rKi)] = 0
and

E[E2
22] . E[α2

0ir
2
Ki] + E[m̃(rKi)2] . η2

K ,

where the last inequality follows from Assumption 2 (iii). So, Markov’s inequality implies E22
p→

0. Finally, Assumptions 1 (iv) and 2 (iii) and the condition
√
Nδα,NηK → 0 guarantee |E23| ≤√

Nδα,NηK = op(1). Combining these results, we obtain E2
p→ 0, and the conclusion follows.

Lemma 3. Under Assumptions 1-3, the following statements hold true.

(i):
∣∣∣ 1
N

∑N
i=1QKiQ

′
Ki − E[QKiQ′Ki]

∣∣∣ p→ 0, and λmin
{

1
N

∑N
i=1QKiQ

′
Ki

}
is bounded away

from zero wpa1.
(ii):

∣∣∣ 1
N

∑N
i=1 εKiε

′
Ki − E[εKiε′Ki]

∣∣∣ p→ 0, and λmin
{

1
N

∑N
i=1 εKiε

′
Ki

}
is bounded away from

zero wpa1.
(iii):

∣∣∣ 1
N

∑N
i=1 ε̂Kiε̂

′
Ki

∣∣∣ = Op(1).

(iv): Under δα,NζKζε,K → 0, it holds
∣∣∣∣( 1
N

∑N
i=1 ε̂Kiε̂

′
Ki

)−1
∣∣∣∣ = Op(1).

(v): λmax
{

1
N

∑N
i=1 g

K
i g

K′
i

}
= Op(1) and λmin

{
1
N

∑N
i=1 g

K
i g

K′
i

}
= Op(1).

Proof of (i): The proof is similar to that of Part (ii).
Proof of (ii): It follows from Belloni et al. (2015, Lemma 6.2) for the first statement, and
Tropp (2015, Theorem 5.1.1) for the first statement.
Proof of (iii): By the triangle inequality, stated assumptions and Lemma 3 (i)-(ii), we have∣∣∣∣∣ 1

N

N∑
i=1

ε̂Kiε̂
′
Ki

∣∣∣∣∣ = max
s∈SK−1

{
1
N

N∑
i=1

(s′ε̂Ki)2
}

. max
s∈SK−1

{
1
N

N∑
i=1

(s′εKi)2
}

+ max
s∈SK−1

{
1
N

N∑
i=1

(s′(α̂i − α0i)QKi)2
}

≤
∣∣∣∣∣ 1
N

N∑
i=1

εKiε
′
Ki

∣∣∣∣∣+ sup
x∈X
|α̂(x)− α0(x)|

∣∣∣∣∣ 1
N

N∑
i=1

QKiQ
′
Ki

∣∣∣∣∣
= Op(1) +Op(δα,N )Op(1) = Op(1).
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Proof of (iv): Since (a+ b)2 ≥ a2 + b2 − 2|ab| for a, b ∈ R, we have

λmin

{
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

}
= min

s∈SK−1

{
1
N

N∑
i=1

(s′ε̂Ki)2
}

≥ min
s∈SK−1

{
1
N

N∑
i=1

(s′(α̂i − α0i)QKi)2
}

+ min
s∈SK−1

{
1
N

N∑
i=1

(s′εKi)2
}

−2 max
s∈SK−1

{
1
N

N∑
i=1
|(α̂i − α0i)(s′QKi)(s′εKi)|

}
.

Note that

max
s∈SK−1

{
1
N

N∑
i=1
|(α̂i − α0i)(s′QKi)(s′εKi)|

}
= Op(δα,NζKζε,K) = op(1).

Also mins∈SK−1

{
1
N

∑N
i=1(s′(α̂i − α0i)QKi)2

}
= op(1), and mins∈SK−1

{
1
N

∑N
i=1(s′εKi)2

}
is bounded

away from zero wpa1 by Lemma 3 (i)-(ii). Thus, λmin
{

1
N

∑N
i=1 ε̂Kiε̂

′
Ki

}
is also bounded away

from zero wpa1, and the conclusion follows.
Proof of (v): By the definitions of eigenvalue and determinant for partitioned matrix, we have

λmax

{
1
N

N∑
i=1

gKi g
K′
i

}
= max

{
V̂ , λmax

{
1
N

N∑
i=1

ε̂Kiε̂Ki

}}
.

λmin

{
1
N

N∑
i=1

gKi g
K′
i

}
= min

{
V̂ , λmin

{
1
N

N∑
i=1

ε̂Kiε̂Ki

}}
.

Thus, the conclusion follows from Lemmas 4 and 3 (iii), and 0 < E[mi(γ0)+α0i(hi−γ0i)]2 <∞.

Lemma 4. Under Assumptions 1-3, the following statements hold true.

(i): V̂0 = 1
N

∑N
i=1{α̂ihi +mi(0)}2 p→ V0, where

V0 = E[{α0ihi +mi(0)}2] = E[α2
0i{hi − γ0i}2] + E[{α0iγ0i +mi(0)}2].

(ii): V̂1
p→ V1, where

V1 = E[{α0iγ0i +mi(0)−mi(γ0)}2] + 2E[mi(γ0){α0iγ0i +mi(0)−mi(γ0)}]

Proof of (i): Note that V̂0 − V0 = V̂01 + V̂02, where

V̂01 = 1
N

N∑
i=1
{α̂ihi +mi(0)}2 − 1

N

N∑
i=1
{α0ihi +mi(0)}2.

V̂02 = 1
N

N∑
i=1
{α0ihi +mi(0)}2 − E[{α0ihi +mi(0)}2].

Since the weak law of large numbers implies V̂02
p→ 0, it suffices to show V̂01

p→ 0. By using
a2 − b2 = 2b(a− b) + (a− b)2 for a, b ∈ R, and the triangle inequality,

|V̂01| ≤ 2
∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)hi{α0ihi +mi(0)}
∣∣∣∣∣+

∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)2h2
i

∣∣∣∣∣ .
18



The weak law of large numbers implies 1
N

∑N
i=1 |hi{α0ihi + mi(0)}| p→ E|hi{α0ihi + mi(0)}| ≤√

E[h2
i ]
√
E[{α0ihi +mi(0)}2] and 1

N

∑N
i=1 h

2
i

p→ E[h2
i ]. Thus, V̂01

p→ 0 follows from Assumption
1(iv).
Proof of (ii): Recall ε̂hi = α̂ihi +mi(0)−mi(γ0). Decompose

V̂1 =
(

1
N

N∑
i=1
{ε̂hi +mi(γ0)}ε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1
{ε̂hi +mi(γ0)}ε̂Ki

)
= AN + 2BN + CN ,

where

AN =
(

1
N

N∑
i=1

ε̂hiε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

ε̂hiε̂Ki

)
,

BN =
(

1
N

N∑
i=1

mi(γ0)ε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂Ki

]−1(
1
N

N∑
i=1

ε̂hiε̂Ki

)
,

CN =
(

1
N

N∑
i=1

mi(γ0)ε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

mi(γ0)ε̂Ki

)
.

Thus, it is sufficient for the conclusion to show that

AN
p→ E[{α0iγ0i +mi(0)−mi(γ0)}2], (21)

BN
p→ E[mi(γ0){α0iγ0i +mi(0)−mi(γ0)}], (22)

CN
p→ 0. (23)

Proof of (21). Let ehi = hi − γ0i. Observe that AN can be decomposed as AN = AN1 +AN2 +
2AN3, where

AN1 =
(

1
N

N∑
i=1

ε̂γ0iε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

ε̂γ0iε̂Ki

)
,

AN2 =
(

1
N

N∑
i=1

α̂iehiε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

α̂iehiε̂Ki

)
,

AN3 =
(

1
N

N∑
i=1

α̂iehiε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

ε̂γ0iε̂Ki

)
,

ε̂γ0i = α̂iγ0i − m̃i(γ0).

First, we show AN1
p→ E[{α0iγ0i +mi(0)−mi(γ0)}2]. Observe that

AN1 = 1
N

N∑
i=1
P2
i (ε̂γ0 |ε̂K) = 1

N

N∑
i=1

ε̂2
γ0i −

1
N

N∑
i=1
Ê2
γ0i,
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where Ê2
γ0i is the projection error of the empirical projection of ε̂γ0 onto ε̂K . Recall εγ0i =

α0iγ0i − m̃i(γ0). For the first term in AN1, note triangle inequality implies∣∣∣∣∣ 1
N

N∑
i=1

ε̂2
γ0i − E[ε2

γ0i]
∣∣∣∣∣ ≤ 2

∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)γ0iεγ0i]
∣∣∣∣∣+ 1

N

N∑
i=1

(α̂i − α0i)2γ2
0i

+
∣∣∣∣∣ 1
N

N∑
i=1

ε2
γ0i − E[ε2

γ0i]
∣∣∣∣∣ .

Thus, Assumptions 1 (iv) and 2 (ii) and the weak law of large numbers imply

1
N

N∑
i=1

ε̂2
γ0i

p→ E[ε2
γ0i]. (24)

For the second term in AN1, note that

1
N

N∑
i=1
Ê2
γ0i ≤

1
N

N∑
i=1
{α̂i(γ0i − β′KQKi)− m̃i(γ0 − β′KQK)}2

≤ 2 1
N

N∑
i=1
{α̂i(γ0i − β′KQKi)}2 + 2 1

N

N∑
i=1

m̃i(γ0 − β′KQK)2

= 2AN11 + 2AN12,

where the first inequality follows from the fact that Êγ0i is the empirical projection error.
For AN11, Assumption 2 (iii) and the triangle inequality imply

AN11 ≤ η2
K,N

{
1
N

∑N
i=1(α̂i − α0i)2 + 1

N

∑N
i=1 α

2
0i

}
, and the weak law of large numbers and As-

sumptions 1 (iv) and 2 (iii) yield AN11
p→ 0.

For AN12, by Assumption 3 (i), AN12 = 1
N

∑N
i=1 m̃i(γ0 − β′KQK)2 . 1

N

∑N
i=1(γ0i − β′KQKi)2

with probability approaching one. Thus AN12
p→ 0 by Assumption 2 (iii). Combining these

results, we haveAN1
p→ E[α0iγ0i − m̃i(γ0)]2.

Next, we show AN2
p→ 0. Observe by linearity of empirical projection and triangle inequality

AN2 = 1
N

N∑
i=1
P2
i (α̂eh|ε̂K) ≤ 2 1

N

N∑
i=1
P2
i ((α̂− α0)eh|ε̂K) + 2 1

N

N∑
i=1
P2
i (α0eh|ε̂K).

By definition of empirical projection

1
N

N∑
i=1
P2
i ((α̂− α0)eh|ε̂K) ≤ 1

N

N∑
i=1

(α̂i − α0i)2e2
hi ≤

(
sup
x∈X
|α̂(x)− α0(x)|

)2 1
N

N∑
i=1

e2
hi = op(1),

where the last inequality follows by law of large numbers under Assumption 3 (ii) and supx∈X |α̂(x)−
α0(x)| p→ 0 by Assumption 1 (iv). Next we show 1

N

∑N
i=1 P2

i (α0eh|ε̂K) = op(1) as well. Since

1
N

N∑
i=1
P2
i (α0eh|ε̂K) =

(
1
N

N∑
i=1

α0iehiε̂Ki

)′(
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

)−1(
1
N

N∑
i=1

α0iehiε̂Ki

)
,
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and
∣∣∣∣( 1
N

∑N
i=1 ε̂Kiε̂

′
Ki

)−1
∣∣∣∣ = Op(1) by Lemma 3 (ii), it suffices to show

∣∣∣ 1
N

∑N
i=1 α0iehiε̂Ki

∣∣∣ =
op(1). Note ∣∣∣∣∣ 1

N

N∑
i=1

α0iehiε̂Ki

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
N

N∑
i=1

α0iehi(α̂0i − α0i)QKi

∣∣∣∣∣+
∣∣∣∣∣ 1
N

N∑
i=1

α0iehiεKi

∣∣∣∣∣ ,
where the first term is bounded as∣∣∣∣∣ 1

N

N∑
i=1

α0iehi(α̂0i − α0i)QKi

∣∣∣∣∣ ≤ sup
x∈X
|α̂(x)− α0(x)|ζK

1
N

N∑
i=1
|α0iehi|

= Op(δα,NζK) = op(1),

by Assumption 1 (iv) and law of large numbers by Assumption 3 (ii). For the second term, by
definition of ehi and iid assumption

E
∣∣∣∣∣ 1
N

N∑
i=1

α0iehiεKi

∣∣∣∣∣
2

= 1
N

Eα2
0ie

2
hiε
′
KiεKi .

ζ2
ε,K

N
→ 0.

It follows by Markov inequality that 1
N

∑N
i=1 α0iehiεKi = Op(

ζ2
ε,K

N ) = op(1) as well.
Finally, we show AN3

p→ 0. Observe that by Cauchy-Schwarz inequality,

|AN3| =
∣∣∣∣∣ 1
N

N∑
i=1
Pi(α̂eh|ε̂K)ε̂γ0

∣∣∣∣∣ ≤
√√√√ 1
N

N∑
i=1
P2
i (α̂eh|ε̂K)

√√√√ 1
N

N∑
i=1

ε̂2
γ0 = op(1),

by AN2
0→ 0 and (24).

Proof of (22). Recall ε̂hi = α̂ihi − m̃i(γ0). By using the empirical projections, decompose

BN =
(

1
N

N∑
i=1

mi(γ0)ε̂Ki

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

ε̂hiε̂Ki

)

= 1
N

N∑
i=1

mi(γ0)Pi(ε̂h|ε̂K)

= 1
N

N∑
i=1

mi(γ0)Pi(α̂γ0 +m(0)−m(γ0)|ε̂K) + 1
N

N∑
i=1

mi(γ0)Pi(α̂eh|ε̂K)

= BN1 +BN2.

Let Êi be the empirical projection error of α̂γ0 +m(0)−m(γ0) onto ε̂K . By the definition of the
empirical projection

BN1 = 1
N

N∑
i=1

mi(γ0){α̂iγ0i +mi(0)−mi(γ0)} − 1
N

N∑
i=1

mi(γ0)Êi.
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For the first term of BN1, the triangle inequality implies∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0){α̂iγ0i +mi(0)−mi(γ0)} − E[mi(γ0){α0iγ0i +mi(0)−mi(γ0)}]
∣∣∣∣∣

≤ 1
N

N∑
i=1
|(α̂i − α0i)mi(γ0)γ0i|

+
∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0){α0iγ0i +mi(0)−mi(γ0)} − E[mi(γ0){α0iγ0i +mi(0)−mi(γ0)}]
∣∣∣∣∣

p→ 0,

where the convergence follows from the weak law of large numbers and Assumption 1 (iv).
For the second term of BN1, the definition of the empirical projection and assumption imply

1
N

N∑
i=1
Ê2
i ≤ 1

N

N∑
i=1
{α̂i(γ0i − β′KQKi) + m̃i(β′KQK − γ0)}2

.
1
N

N∑
i=1
{α̂i(γ0i − β′KQKi)}2 + 1

N

N∑
i=1

m̃i(β′KQK − γ0)2. (25)

For the first term of (25), it holds 1
N

∑N
i=1{α̂i(γ0i − β′KQKi)}2 . η2

K
1
N

∑N
i=1 α̂

2
i = op(1) by

Assumptions 1 (iv) and 2 (iii). For the second term of (25), the weak law of large numbers and
Assumption 2 (iii) yield 1

N

∑N
i=1 m̃i(β′KQK − γ0)2 = op(1). Thus, we have 1

N

∑N
i=1 Ê2

i
p→ 0. By

this and the Cauchy Schwarz inequality, we obtain

∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)Êi

∣∣∣∣∣ ≤
√√√√ 1
N

N∑
i=1

mi(γ0)2

√√√√ 1
N

N∑
i=1
Ê2
i = op(1).

Therefore, BN1 satisfies BN1
p→ E[mi(γ0){α0iγ0i +mi(0)−mi(γ0)}].

For the term BN2, by Cauchy-Schwarz inequality

|BN2| =
∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)Pi(α̂eh|ε̂K)
∣∣∣∣∣ ≤

√√√√ 1
N

N∑
i=1

m2
i (γ0)

√√√√ 1
N

N∑
i=1
P2
i (α̂eh|ε̂K).

By law of large numbers and Assumption 3 (ii), 1
N

∑N
i=1m

2
i (γ0) = Op(1), and by the proof of

AN2
p→ 0, 1

N

∑N
i=1 P2

i (α̂eh|ε̂K) = op(1). Thus, BN2 = op(1). Conclusion follows by combining
the probability limits of BN1 and BN2.

Proof of (23). Recall εKi = α0iQKi −MKi. Decompose

CN =
(

1
N

N∑
i=1
{mi(γ0)(α̂i − α0i)QKi +mi(γ0)εKi}

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

×
(

1
N

N∑
i=1
{mi(γ0)(α̂i − α0i)QKi +mi(γ0)εKi}

)
= CN1 + 2CN2 + CN3,
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where

CN1 =
(

1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

)
,

CN2 =
(

1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

mi(γ0)εKi

)
,

CN3 =
(

1
N

N∑
i=1

mi(γ0)εKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

mi(γ0)εKi

)
.

For CN2, we further decompose CN2 = CN21 + CN22, where

CN21 =
(

1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]
)
,

CN22 =
(

1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

E[mi(γ0)εKi].

Also, CN3 = CN31 + 2CN32 + CN33, where

CN31 =
(

1
N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]
)′ [

1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]
)
,

CN32 =
(

1
N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]
)′ [

1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

E[mi(γ0)εKi],

CN33 = E[mi(γ0)εKi]′
[

1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

E[mi(γ0)εKi].

Note that∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

∣∣∣∣∣ ≤ ζK sup
x∈X
|α̂(x)− α0(x)|

(
1
N

N∑
i=1

mi(γ0)
)

= Op(ζKδα,N ),

and ∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]
∣∣∣∣∣ = Op(ζε,K/

√
N),

where the last equality follows from Markov inequality combined with

E

∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)εKi − E[mi(γ0)εKi]
∣∣∣∣∣
2 = 1

N
E[mi(γ0)2|εKi|2] ≤

ζ2
ε,K

N
.

By these results, Lemma 5, and Assumptions 1 (iv) and 2 (iii), we have

|CN1| = Op(ζ2
Kδ

2
α,N ) = op(1),

|CN21| = Op(ζKδα,Nζε,K/
√
N) = op(1), |CN22| = Op(ζKδα,N

√
KηK) = op(1),

|CN31| = Op(ζ2
ε,K/N) = op(1), |CN32| = Op(ζε,KηK

√
K/N) = op(1),

|CN33| = Op(Kη2
K) = op(1),

and the conclusion follows.
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Lemma 5. Under Assumption 1-3, it holds |E[mi(γ0)εKi]| = O(
√
KηK).

Proof: Note that E[mi(γ0)εKi] = E[mi(0)εKi] +E[m̃i(γ0)εKi]. Let rK = γ0−β′KQK . It follows

E[m̃i(γ0)εKi] = E[m̃i(γ0)α0iQKi]− E[m̃i(γ0)MKi]

= E[{β′KMKi + m̃i(rK)}α0iQKi]− E[{β′KMKi + m̃i(rK)}MKi]

= Ξ1 + Ξ2,

where Ξ1 = E[α0iQKiM
′
Ki]βK −E[MKiM

′
Ki]βK and Ξ2 = E[(α0iQKi−MKi)m̃i(rK)]. Note that

(5) implies Ξ1 = 0. By Cauchy and Schwarz inequality, we have

|Ξ2|2 ≤ E[|α0iQKi −MKi|2]E[m̃i(rK)2]

. trace(E[εKiε′Ki])E[r2
K ] . Kη2

K → 0.

Also, by (5),

E[mi(0)εKi] = E[mi(0)α0iQKi]− E[mi(0)MKi]

= E


m̃i(m(0)q1)

...
m̃i(m(0)qK)

− E


mi(0)m̃i(q1)

...
mi(0)m̃i(qK)

 = 0.

Combining these results, the conclusion follows.

Lemma 6. Suppose assumptions of Theorem 1 hold true except display (10). In addition, (1)
if ζ3

ε,KζKδα,N → 0, and plim
[

1
N

∑N
i=1 Pi(m(γ0)|εK)2

]
= V∗, then CN

p→ V∗ ; (2) otherwise, if
1
N

∑N
i=1 Pi(m(γ0)|ε̂K)2 p→ V∗∗, then CN

p→ V∗∗.

Proof: Statement (2) is straightforward. We only show statement (1). Note the following
decomposition of CN still holds:

CN = CN1 + 2CN2 + CN3,

where CN1, CN2, CN3 are defined in the proof of for display (23). Specifically, it still holds
|CN1| = Op(ζ2

Kδ
2
α,N ) = op(1). It remains to bound CN2 and CN3. Note

∣∣∣ 1
N

∑N
i=1mi(γ0)εKi

∣∣∣ ≤
ζε,K

1
N

∑N
i=1 |mi(γ0)| = Op(ζε,K) since 1

N

∑N
i=1 |mi(γ0)| = Op(1) by the law of large numbers.

Recall
∣∣∣ 1
N

∑N
i=1mi(γ0)(α̂i − α0i)QKi

∣∣∣ = Op(ζKδα,N ). Hence by Lemma 3(iii),

|CN2| ≤
∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)(α̂i − α0i)QKi

∣∣∣∣∣
∣∣∣∣∣∣
(

1
N

N∑
i=1

ε̂Kiε̂
′
Ki

)−1∣∣∣∣∣∣
∣∣∣∣∣ 1
N

N∑
i=1

mi(γ0)εKi

∣∣∣∣∣
= Op(ζKδα,Nζε,K) = op(1).

For CN3, notice

CN3 =
(

1
N

N∑
i=1

mi(γ0)εKi

)′ [
1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1(
1
N

N∑
i=1

mi(γ0)εKi

)
= C̃N31 + C̃N32,
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where

C̃N31 =
(

1
N

N∑
i=1

mi(γ0)εKi

)′
[

1
N

N∑
i=1

ε̂Kiε̂
′
Ki

]−1

−
[

1
N

N∑
i=1

εKiε
′
Ki

]−1
(

1
N

N∑
i=1

mi(γ0)εKi

)
,

C̃N32 =
(

1
N

N∑
i=1

mi(γ0)εKi

)′ [
1
N

N∑
i=1

εKiε
′
Ki

]−1(
1
N

N∑
i=1

mi(γ0)εKi

)
.

Let 1
N

∑N
i=1 ε̂Kiε̂

′
Ki = Σ̂N , 1

N

∑N
i=1 εKiε

′
Ki = ΣN . Then

|ΣN − Σ̂N | =
∣∣∣∣∣ 1
N

N∑
i=1

(ε̂Ki − εKi)(ε̂Ki − εKi)′ +
1
N

N∑
i=1

εKi(ε̂Ki − εKi)′ +
1
N

N∑
i=1

(ε̂Ki − εKi)ε′Ki

∣∣∣∣∣
≤

∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)2QKiQ
′
Ki

∣∣∣∣∣+
∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)εKiQ′Ki

∣∣∣∣∣+
∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)QKiε′Ki

∣∣∣∣∣ .
Note

∣∣∣ 1
N

∑N
i=1QKiQ

′
Ki

∣∣∣ = Op(1) by Lemma 3 (i), so∣∣∣∣∣ 1
N

N∑
i=1

(α̂i − α0i)2QKiQ
′
Ki

∣∣∣∣∣ = max
a∈SK−1

1
N

N∑
i=1

(α̂i − α0i)2(a′QKi)2

≤
(

sup
x∈X
|α̂(x)− α0(x)|

)2

max
a∈SK−1

1
N

N∑
i=1

(a′QKi)2

=
(

sup
x∈X
|α̂(x)− α0(x)|

)2 ∣∣∣∣∣ 1
N

N∑
i=1

QKiQ
′
Ki

∣∣∣∣∣ = Op(δ2
α,N ).

Also
∣∣∣ 1
N

∑N
i=1(α̂i − α0i)εKiQ′Ki

∣∣∣ ≤ sup
x∈X
|α̂(x)−α0(x)|sup

x∈X
|εK(x)|sup

x∈X
|QK(x)| = Op(ζKδα,Nζε,K).

Similarly
∣∣∣ 1
N

∑N
i=1(α̂i − α0i)QKiε′Ki

∣∣∣ = Op(ζKδα,Nζε,K) as well. So |ΣN − Σ̂N | = Op(δ2
α,N +

ζKδα,Nζε,K) = Op(ζKδα,Nζε,K). It follows

|C̃N31| =

∣∣∣∣∣∣
(

1
N

N∑
i=1

mi(γ0)εKi

)′
Σ̂−1
N {ΣN − Σ̂N}Σ

−1
N

(
1
N

N∑
i=1

mi(γ0)εKi

)∣∣∣∣∣∣
= Op(ζ3

ε,KζKδα,N ) = op(1)

by assumption and Lemmas 3 (i) and (iv). Finally C̃N32 = 1
N

∑N
i=1 Pi(m(γ0)|εK)2 p→ V ∗ by

assumption. The conclusion follows.
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